202,114 research outputs found

    Transport of magnetoexcitons in single and coupled quantum wells

    Full text link
    The transport relaxation time τ(P)\tau (P) and the mean free path of magnetoexcitons in single and coupled quantum wells are calculated (PP is the magnetic momentum of the magnetoexciton). We present the results for magnetoexciton scattering in a random field due to (i) quantum well width fluctuations, (ii) composite fluctuations and (iii) ionized impurities. The time τ(P)\tau(P) depends nonmonotonously on PP in the case (ii) and in the cases (i), (iii) for D/lD/l smaller than some critical value (DD is the interwell separation, l=c/eHl=\sqrt{\hbar c/eH} is the magnetic length). For D/l1D/l\gg 1 the transport relaxation time increases monotonously with PP. The magnetoexciton mean free path λ(P)\lambda (P) has a maximum at P0P\ne 0 in the cases (i), (iii). It decreases with increasing D/lD/l. The mean free path calculated for the case (ii) may have two maxima. One of them disappears with the variation of the random fields parameters. The maximum of λ(P)\lambda (P) increases with HH for types (i,iii) of scattering processes and decreases in the case (ii).Comment: 13 pages, 8 figures in EPS format; Physica Scripta (in print

    Photon emission in Pb+Pb collisions at SpS and LHC

    Get PDF
    Yield of direct photons in Pb+Pb collisions at SpS and LHC energy is evaluated with emphasis on estimate of possible uncertainty. Possibility of experimental observation of direct photons at LHC is discussed. Predictions of several models at SpS energy are compared with experimental data.Comment: 19 pages, 13 figure

    Cooper pairing of electrons and holes in graphene bilayer: Correlation effects

    Full text link
    Cooper pairing of spatially separated electrons and holes in graphene bilayer is studied beyond the mean-field approximation. Suppression of the screening at large distances, caused by appearance of the gap, is considered self-consistently. A mutual positive feedback between appearance of the gap and enlargement of the interaction leads to a sharp transition to correlated state with greatly increased gap above some critical value of the coupling strength. At coupling strength below the critical, this correlation effect increases the gap approximately by a factor of two. The maximal coupling strength achievable in experiments is close to the critical value. This indicated importance of correlation effects in closely-spaced graphene bilayers at weak substrate dielectric screening. Another effect beyond mean-field approximation considered is an influence of vertex corrections on the pairing, which is shown to be very weak.Comment: 6 pages, 5 figures; some references were adde
    corecore